NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE
PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)
DATABASE AND APPLICATION PROGRAM FOR THE
TURKISH NAVY FRIGATES

by
Yuksel Can

March 2000

Thomas Wu

Thesis Advisors:
Lee Edwards

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTRED §

20000622 028

:

_

REPORT DOCUMENTATION PAGE OMB N, 07000158

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) . 2. REPORT DATE) 3. REPORT TYPE AND DATES COVERED
. March 2000 Master’s Thesis
4. TITLE AND SUBTITLE: DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE PERSONNEL, 5. FUNDING NUMBERS

OPERATIONS, EQUIPMENT, AND TRAINING (POET) DATABASE AND APPLICATION PROGRAM
FOR THE TURKISH NAYY FRIGATES

6. AUTHOR Can, Yuksel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of

Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT) 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words) -

The Turkish Navy frigates have a challenging mission, which encompasses tactical, operational and
administrative tasks. Lacking an automated information infrastructure hinders the ships’ ability to efficiently perform the
administrative activities, to generate the required reports quickly and to make effective decisions based on this
information. The objective of this thesis is to design and implement the Personnel, Operations, Equipment, and Training
(POET) Database and Application Program for the Turkish Navy frigates and to analyze the potential benefits that will
be obtained by using this system. The POET database system will provide the Turkish Navy frigates with an automated
information system that will support the administrative activities, release manpower to perform other duties and reduce
the productive power loss by increasing the availability, accuracy, and consistency of the data. The thesis covers the
analysis of requirements, conceptual database design using Semantic Data Model, logical database design on Microsoft
Access DBMS, and implementation of the application program using Java and JDBC API. The result of this study is a
functional application that will eliminate most of the current problems onboard the frigates and result in considerable
savings of personnel power and time while providing the required information to the command quickly.

14. SUBJECT TERMS Database, Relational Database System, Semantic Data Model, Java, JDBC, 15. NUMBER OF PAGES
System Maintenance, Design, Implementation and Analysis of Information Systems 293

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFI- 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CATION OF ABSTRACT UL
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

ii

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE
PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)
DATABASE AND APPLICATION PROGRAM FOR THE
TURKISH NAVY FRIGATES

Yuksel Can
Lieutenant Junior Grade, Turkish Navy
B.S., Turkish Naval Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
and
MASTER OF SCIENCE IN SYSTEMS MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author: i ’

Yeksel Can

wm zsis Advisor
L%)izrds, Thesis Advisor
1 4 C

Dan Boger, Chairman, Department #f Computer Science

— Radean o

Reuben Harris, Chairman, Systems Management Department

Approved by:

i

iv

ABSTRACT

The Turkish Navy frigates have a challenging mission, which encompasses
tactical, operational and administfative tasks. Lacking an automated information
infrastructure hinders the ships’ ability to efficiently perform the administrative activities,
to generate the required reports quickly and to make effective decisions based on this
information. .

' The objective of this thesis is to design and implement the Personnel, Operations,
Equipment, and Training (POET) Database and Application Program for the Turkish
Navy frigates and to analyze the potential beneﬁts that will be obtained by using this
system.‘ The POET database system will provide the Turkish Navy frigates with an
automated information system that will support the administrative activities, release
manpower to perfofm other duties and reduce the productive power loss by increasing the
availability, accﬁracy, and consistency of the data.

The thesis covers the analysis of requirements, conceptual database design using
Semantic Data Model, logical database design on Microsoft Access DBMS, and
implementation of the application program using Java and JDBC API. The result of this
study is a functional application that will eliminate most of the current problems onboard
the frigates and result in considerable savings of personnel power and time while

providing the required information to the command quickly.

Vi

TABLE OF CONTENTS

I. INTRODUCTION ‘ - 1
A. BACKGROUND........cooceumrrunn. et eevereneeeasennane 1
B. OBJECTIVEcooviiiiicreenreeeeenrenesncnineneens reerteretee ettt ettt ese st e aeeeesaens 2
C. METHODOLOGY ereereereerere ettt ettt s et ne s e e assaeae b e saten e senen 3

1. Requirements ANalysiscccccocoevreeiniennnniniiieencieseesaee s 3
2. = Conceptual Database Designccocovvevevivienrivennnncne RP—— 4
3. Logical Database DeSignccccoevivivierinirciriiirininenintcenereeeereesseaaes 4
4. Physical Database Desigh.......ccccrceruerverernrrceenrseerniesensenssesesnesesssesesenenns 5
5. System Aﬁalysis and Evaluation.........ccceceevvierreerneeniensiessnessnecsssnseesensenes 5
D. ORGANIZATION OF THESISccccvviniiniriimnnriinetessesnesensessessessssenesas 5
II. BACKGROUND 9
A. DATABASE SYSTEMS......ccooevvvvininnan cesvssnaserssussnsssisserssnssnrensuesnetnes s asasssanees 9
1. Benefits of the Database Appro'ach..........................; 11
2. Data Models, Schemas, and INStANCEScccueeveeeerrreceereereeseereerueseeseeneens 20
3. DBMS AICRItECIUTEeovrereeneeeceeenriiesteicsie et eree s enns 22
B. THE RELATIONAL DATABASE MODEL.........ccccovnmiinmnirinreerieeceenenes 23
1. Relational Model COncepts........cccouiverrerrenuiinimesiinineticnneresreseesresnennens 24
2. Relational Model Constraintsc.ccoeeeviivivieienineinnerieneesenineeseensennens 31
3. Update Operations on Relationsccoeeeeevivieinrnennecinrenieneciiennnns 34
4. Relational Algebra................. e eee et s et s et 36
C. STRUCTURED QUERY LANGUAGEcccocoovivminireieeeieeteteeaes 40
1. Data Definition in SQL.....ovuiriinieieiisssis s 41
2. QuerieS in SQL ..ottt 43
3. Update Statements in SQL.......ccccoiviiminiininiiinreeecee e, 46
4. Viewsin SQL....cucirriiiieiirriinineiecncine et ennan e reeeeens 48

vii

5. Processing SQL Statementscoevvveceveverenerereeeeeeeseeeesssessssseenens ...49

6. SQL TeChNIGUES.......ceerrirererrrerrereeesieceeesceeseensene e eeeeeeeesssesesesessanens 51

D. NORMALIZATIONcootmtmerrrrrtetereeerereeeeereeseesseseseesessesesssssssesessssesesssssons 56
1. Functional Dependencies............ccuoeurrecuremcreeeereecnrireeeeeeeeneeeesessssesenn, 57

2. KYS ettt s e er e 59

3. Update ANOmAlies......ccoveruireeererireeirieceersieceeeeeeseneeesseseseseesessssesesseseess e 60

4. NOMAl FOIMS ..ottt et sses s 62

5o SUMMATY ..ottt ettt e e ee e e sesesassenans 69

E. ACCESS 7 ottt et es s s 70
1. Features 0f ACCESS 97 ...ouuvvueuirereeeeeieeccee et ees e ess s 71

2. Requirements fOr ACCESS 97vuvurveerrreeeceerieieceesee e eeseeseeeesseesseseen 77

3. Database Objects and Views in Access 97coou....... ereereeeeaaeas 78

III. SEMANTIC DATA MODEL 83
A. INTRODUCTION ... ereebeaes et et et et ta e re s s enenes 83
B. SEMANTIC OBJIECTSoovoiirieeeetererereeeecessseseseeeesesese e s s s sessssssssesesaens 85
Lo ABIIDULES. ...ttt et e e e 86

2. Attribute Cardinalitycceceeeemevereueeeeieiieeeeeeeeeeeeeeee e eesesees e 88

3. Paired AtIIDULES c.oveveevieittc e, ceeeerenaa 89

4. Object IAENtifIersccocvvrereeeeitiececcceete et esere e ses e 89

5. Attribute DOmAInS.c.cecuiuiueereeeeieeeiieeeeeeeeeeeeeee e e e e 90

C. TYPES OF SEMANTIC OBJECTS........ eeeserus st et stsnasreses s dosaseessanseesens 90
L. SimPIE OBJECTS ..ucuveeeciereiriteteeeeeeeeeeeeete e es e s ees e e ses e eenaes 90

2. ComPOSItE OBJECES ..vverrerererereerieeereteeeeeaceeeseseeeeessesseseeseesesesesesesssesesaens 91

3. Compound ObJECtS.....cc.ocuruerurmrrrrereercrereeeececeeeseeeceseeseeeeessesesesessessessens 92

4. Hybrid OBJECTS ..cevrreiirririereteieecee et es e eneeseees et e seesessssssesesseenens 92

5. AsSOCIAtioN ODBJECES ..c.vovurueeirereireretececttcteeece e e s ee e eeteseseser s 93

6. Parent/Subtype ODJECES....cccerieiirerierrensenierieciniesicsseseeses et nenes 95

7. Archetype/Version ObJectSmvimmiieiriinisiinirissiiss s 97

D. TRANSFORMATION OF SEMANTIC OBJECTS INTO RELATIONS98
1. Transformation of Simple ObJects.......ccererivenircrereniireennrrcsirnrcineees 98

2. Transformation of Composite ObJects.......ccceevererririrvinnvcsinriniiseninnas 99

3. Transformation of Compound ObjJectsc.cccoeemerrivninincsnnnnnininenn. 100

4. Transformation of Hybrid ObJects.........crmmermmnimimiiinisiiinninnes 103

5. Transformation of Association ObJECtSc...ecerveerirrecrerrreereererercenennene 106

6. Transformation of Parent/Subtype Objects.......cccccvvvvivvniervirenninneannes 108

7. Transformation of Archetype/Version Objects.......cccocevueverucrmvreinnennes 109

IV. JAVA AND JAVA DATABASE CONNECTIVITY (JDBC) 111
Al TAVA .ottt ettt ettt e bt s s 111
B. ADVANTAGES OF JAVA......... crrrsseseussestasnsr st s s bA s s s a0 113
1. JavaisPortable................ eereeseeessresressaasansasanesteassassreaestsesaesasrertsasatenen 114

2. Javais Object-Oriented........cccooniriniririninniinininiieciee et 114

3. Java Makes It Easy to Write Correct Code.......ccoccevrnviinicnunnincnnnnnne. 115

4. JavaIncludes a Library of Classes and Interfacesccccceevcercvnceneencns 117

5. Javais EXtensible........cooiieniiininniniiiintc e, 118

6. JAVA QS SECUTE....ccvurrrernreancrmrencemcessinrassnsessseneasenss e 118

7. Javais MUltHIEadedccccccvevvreeveereseeeesesessessssssssssseesesesssesessesssessene 119

8. JavaPerforms Well.....ccooeeeiiveeniiciiiinicntcnce e ..120

9. Java Scales Well ...ttt 120

10. Javais Distributed.........cccevveeicreanunnnne terreeeerrnee et e ettt s et s e e et eassaaeas 121

11, JAVA IS RODUSE c..veeeeeerceceeecseeeeeeecensseessesseseesassessesassassessssssassesssssansanses 121

12, JAV QS DYDAITHC croevoreeresees e sesseessseessessssereessneseesssneesssreesneess 121

ix

1. Loading the DIIVET.......cccocoueiueieevereveceececeeeeeereee e eeeeesaeeeseses s 122
2. Establishing a Connection with the Database...................oooevovoorovoo. 123
3. Sending SQL Statementscceevueeeemeneeeeeeemsseessesesesessssessssssssonns 123
4. Processing the ReSUIS.........ccccuvivevieiieeeeeeeeeeeeeeeeeeees e se e 124
D. JDBC CLASSES AND INTERFACES.........coeoneveeeeeeeeeesieeeeeseeressessesennn. 125
1., DriverManager Classc.coueeueueveriveeeeeeeeisiceeceeeeseseeseseeeesesseesssssesens 125
2. Connection INTEIface.........ouuereereeurerreerieeineet e eeeseeeesseeseesseseenons 126
3. Statement INtEIFACEocovvverirerrirereivnee e seeereesaes e, 126
4. PreparedStatement INtEIfaceoveveeeeemreeeereeereeeeesseseres e resenons 128
5. CallableStatement INEIfACEucvvecveierierceereeeeeceeeeeeeeeeeessees e, 129
6. ResultSet INtErface.....c.ovvmuuivereireeecieceeeeeeeereee e eseee s ceees e cesses s 129
7. ResultSetMetaData INterfaceoceoemereeeeeceeeeereereseseeeese e, 131
8. DatabaseMetaData INterface...............ouveueeeeeeeeereeeetreeesseeeesesseresesenenns 132
E. JDBC AND CLIENT/SERVER MODELS........cooeeeeeeeeeeeeeeeeseseseereeon, 133
F. JDBC DRIVERS........cootermnereteeee et ssersssesseseesassses s s ees s s s 135
1. JDBC-ODBC Bridge plus ODBC DIiVercovueermeeeereereeeeeeseernnn 136
2. Native-API partly-Java DIIVET...........ccoeieivreereeeeereeeeeeeese oo esenesans 137
3. JDBC-Net pure Java Driver........... e eeeeeeeeeee e seese e s 138
4. Native-protocol pure Java DITVET..........ccoeeeeeeeeeeeeeesersesesessereresenens 138
5. Driver Selectioncuoveveunenen... et ee e 139
V. REQUIREMENTS ANALYSIS FOR POET DATABASE 141
A. DATABASE DEVELOPMENT PROCESS ...t 141
1. Requirements Collection and Analysis.............ccivueuemeeeeemeereeesrersnnnnn, 141
2. Conceptual Database DeSignc.eueueecureeeerereeeeereeeeeeeesseressessenns 144
3. Logical Database DeSignccovmvurveveureeenreesieerreennnn, reeresreresaneens 145

4. Physical Database DeSigh.......coccvuvirmmmmmireinminiiniisissenisissennss 146
B. REQUIREMENTS ANALYSIS FOR POET DATABASE.........cccovemenne. 147
1. Ship ObJECt...ciiriieirerireeerereeieireeeeeecceenenesssissasensiaes rererereseaeteae e 147
2. Department Object................... eeerteeteeete e et e s bt e s et s be s s e b e s aesaeas 148
3. Division Objept ... 148
4. Personnel Object.............. teeereereeseeete e be st e et R s s bt e a e b s R et as 148
5. Training Object......... et essmeees s 150
6. OPEIAHON ObJECt .rrrerereserrsesssesesesssrsssesseseseseseos 150
7. Equipment ODBJECtcccvuvvimiuiniimrmiiiiiiite ettt 151
C. DATADICTIONARY FOR POET DATABASEccccoviiniiiceirencenes 152
VL. LOGICAL DATABASE DESIGN FOR POET DATABASK......cccccceiveanene 153
A. RELATIONAL TABLES OF POET DATABASE........ocerierneerennen. 153
1. Ship Relation......cocouimrieriiiiciintntecsinin et rsnaens 155
2. Overhauls Relation........cccecceveverrmnuesncncninnninninnineensesnenes reeeneeeeeeene 156
3. Department Relationccccccuiriiminmninrneeinnnse st 156
4. Division Relationcocevceevueerericiiinsiininnirccirciciccteccnes e 157
5. Personnel Relationc.coceevvierienieeenensennseeeeniinenecnnenenneesnnesssssnenenes 157
6. Courses-To-Take Relation..........ccocevvvvenmiinneenieenninennns eveeeneeesesseeesesene 158
7. Courses-Taken Relation.........cccocvvvucvuvcencrennenne. retere e et e ne e sa e aeans 159
8. Assignments Relationccocciriviiiiinivinnienennieeesneseniesee e 159
9. Foreign-Languages Relation..........cocvevivieimnmniicennienieeneieececreee, 160
10. Training Relationccccoeeuvecrcineeninicninnneennens oot ee e e 160
11. Operation Relation.........ccccoveviriininniniieinreicieieeeseesr e s 161
12. Events Relation.......cccoveeccreieniiecneimnnnnccninecininiensnennesaeens crereeeeennens 161
13. Port-Visits Relation........ccoceeeercmeeeenenneniiincntisiiiieiesiesssesessessnesnnenans 162
14. Equipment Relationcoouviiiinuniiininninineiressesssssnss s 162
15. Failures Relationoc..ocorsvern — T, 163

xi

B. POET DATABASE RELATIONSHIPSococooeemreeeeeeeeemeeerssreeseeseeneeesesssenon

VII. IMPLEMENTATION OF POET DATABASE AND

DEVELOPMENT OF APPLICATION PROGRAM
A. POET DATABASE IMPLEMENTATIONccoooeiieeeeeceeeerceeeeeeeeseenes
B. APPLICATION PROGRAM IMPLEMENTATION........cccocosruniemecmrermrennns
L. INPut FOIMS...ccooeviirireitcrceeeeecte ettt reeeeeereaeanens
2. Update FOImS.......oocceuirinrinnisicinsi st ssesasssiins
3. TableS.ce et R —
A, REPOTIES ..coceeneeereecicnreteintereetssese et s se s st sessssessnse et ssssssssssensnens
5 QUETIES ..ottt ettt st e e e e e eseesee s e eneesneaes

VIII. SYSTEMS IMPLEMENTATION AND SUPPORT

A. SYSTEMS MAINTENANCEccommnnnrrvvvmminesrsisssssssessssssssesssssssssssssssnnnnns
' B. QUALITY ASSURANCE.......ooecierereeerereeeereeereresene st ese e esse st sesesasenee
L TESHNG ceciiceeriieinieieirertreste ettt ssessse s s ses e besssasanssesssensonen

2. VErfiCaAtiON ...c.cviueuiiririireeetecerteer et s st s e

3. Validation........cccooveeeeeeeririeneeenisseisaetesese e enese e s snaens

4. CertifiCatIONcouerrrererererereeeree ettt eae s s sa s eee

5. Testing SIrategies.......ccccvvermirirrereerrieeeieesteserere e rese et seaeeses s

C. TRAINING ...ttt ieretrtese e e e sae s se st es et ese s s sensassesenan
D. CONVERSION.......ccistritrinietrrrntrentsereensseevesse e sesese s e esesss s ssesssssssesssesesses
1. Paralle]l SyStems......cccoceveeiriieereereeeiceeteeeerereere e eess e neneneseaes

2. DiIrect CONVETSIONccuiotrereiriernrereeriereenteneeeteseseeseseeseesessesessesesssesenees

3. Pilot APPIOAChccocuierctrteiirteieeeete et

xii

4.. Phase-In Methodc.eeeeeeeeienerreieeeennceenecnnenenne st snessassssessenes 189

E. SYSTEMS RELIABILITYoooovoooumeumemeseseesessesssssssssessssssssssssssssssesssssssssssses 190
IX. ANALYSIS OF POET DATABASE SYSTEM 191
A. CURRENT SITUATION.....ccooereeritiinricienninrinereste s ssssesessesessees 191
B. FILE PROCESSING SYSTEMS....cccneiurimimmmmmmssssssssssssssssssssssesssssssssssess 193
1. Data RedUNAnCYccccoveeirinminmisieiriinenreeresesrsnessescsnssestssensstenenene 193

2. Data INCONSISIENCY wcuvreveverreeeeeseeruiinseisisseseesessessssnessssssstsessssnessnsseans 193

3. Limited Sharing 0f Data..........ccoowvvruemeeeseressssessssseseesesmseeecessssenecens194

4. Program/Data Dependencyccoevemmnneiicnincnensincccncccinniiieens 194

5. Inflexibility of InfOrmation..........ccccevuiureniemienresseiec et 195

6. Data ISOlAtiONceereeereereereereereseecreeseerisessessesnessesesessessesnassssassasessens 195

7. Difficulty in Representing Data.......cooevevvenienreninienieniincnnecnnnees 195

8. Difficulty in Information Resource Management..........ccococeencneeee. w196

C. DATABASE PROCESSING SYSTEMS.....oooviiiinininnnnesinresiiesnsennenens 196
1. Minimum Data Redundancyccccecveviniiiiniininniesieninienescnencennens 197

2. Improved Data Sharing.........ccovvimmmrmeienineeeirtseet e 198

3. Increased Data Availability.........ccccoverviiiiiiiiniinieninieneceeeesinnne ..198

4. Cost Reductioh .. 198

5. Flexibility in Data ACCESS....coceveruimerrrmrieireireestesnsnsesesisnccceescnnes 198

6. Advanced Security and Integrity.........ccveuererrmrirecieninenrerenncnesercenen 199

7. Program/Data Independence............cocvuerveeeeueinsnniennninenecnceninescsisinnns 199

8. DynamicC StIUCIUIEccivrvuiveeririrenteteeneenstesesst st seeestsssessnenennes 200

D. BENEFITS OF THE POET DATABASE SYSTEM.....cccoommieeeininne 200
1. Technical ASPECE......cccvviricmemisviriirinienieresistnese s snsstesse s sss e esesasts e ene 200

2. ManpOWET ASPECE.....ccoeruermerrerrerinrinteiisesenesesssnessessssenetrassesssssnsasons 201

3. Decision MaKing ASPECL.....ccceecrrerirrmeririsiisieirseesieeesnsnsssssessessessesseses 202

1. Tra1mng .. 203
2. COMVETSION ...ueueueuerereretescteecteeetereeeeeeesessessesessessesasessesssesssenssssssessessao 204
3. INEEIALION ... cueeceeeiceeieteee ettt ee s eee s s eeen s 206

F. ASSESSING THE IMPACTS OF COMPUTER

TECHNOLOGY IN ORGANIZATIONSocvvererererrenrerreereeeeeceenseneesnenne. 206

G. CONCLUSION.........coomturimerinesrrtsssssnssiesses s sasssess s sssssssssassssesssesesenees w208

X. CONCLUSIONS ‘ 211
A, SYNOPSIS........outiremceeireeiesestse et sses s tsss s sesesea s ses s esens 211

B. FUTURE ENHANCEMENTSoecovemriereeruenrectseeseescescnsssesnssassnsessessssens 213
APPENDIX A: SEMANTIC OBJECTS 215
APPENDIX B: DOMAIN SPECIFICATIONS 225
APPENDIX C: RELATIONAL TABLES 239
APPENDIX D: RELATIONSHIP DIAGRAM ...243
APPENDIX E: APPLICATION PROGRAM SCREEN SHOTS 245
APPENDIX F: APPLICATION PROGRAM CODE 267
LIST OF REFERENCES 429
INITIAL DISTRIBUTION LIST 431

Xiv

LIST OF FIGURES

Figure 2.1: University Database ... 26
Figure 2.2: STUDENT Relationc.ccovuiinieiiininiitiiiiiiniiieeseeeceeeeesesenne e esssssnesens 28
Figure 2.3: ACTIVITY Relation........ccccovcennece. eusssrsasnenesnastsnsersesst stsasase sttt sRsLO St sReees 60
Figure 3.1: Semantic Object DIiagramccccecevcvvriirniiinineincienieeneeneresnesesenes 87
Figure 3.2: EQUIPMENT Simple Object................. rteeeeerereet et re s e e e et e s neeseneteneenent 91
Figure 3.3: HOTEL-BILL Composite Object........ccccvvvininriinriiniiinieeeinnnens e 91
Figure 3.4: BOOK and AUTHOR Compound Objectscovvvriinuiriesunnnireeninenenenene 92
Figure 3.5: SALES-ORDER Hybrid Object........cccviiiiniiniiiniiieiecienieeeieneseeennees 93
Figure 3.6: FLIGHT, AIRPLANE, and PILOT Semantic Objects........cccecevvvrererenrnrenenene. 94
Figure 3.7: EMPLOYEE Supertype and MANAGER Subtype Objectscoceuvvvuirinnnens 95
Figure 3.8: EXCIUSIVE SUDLYPES.....ccoovrereeiiirieniticiitiniictnteritse s 96
Figure 3.9: TEXTBOOK Archetype and EDITION Version Objecté 97
Figure 3.10 (a): EQUIPMENT Simple ODBJECL ..ttt aeanens 98
Figure 3.10 (b): EQUIPMENT Relation.........cccoveeieurriiniiiininninniinnrcnnceieseessssesseseseans 98
Figure 3.11 (a): HOTEL-BILL Composite ObJeCtcceviieivirenrininreeinrierenneisneinenns 99
Figure 3.11 (b): HOTEL-BILL and LINEITEM Relationsccocoveruerenveririenennenencnne. 100
Figure 3.12 (a): One-t0-One Compound ObJECEScevurmruriiereiveerenesieennntennerenenenes 101
Figure 3.12 (b): MEMBER and LOCKER Relations..........ccocevivniiivueninniecnennneeneninnne 101
Figure 3.13 (a): One-to-Many Compound Objects.........c.cccovvvmnrireninreeenniennseeneeenennes 102
Figure 3.13 (b): EQUIPMENT and REPAIR Relations.........cccccevuuiernnneene rereeeeraeeeeeeaes 102
Figure 3.14 (a): BOOK and AUTHOR Compound Objects........ccocevrerierreneinnnecreeennene 103
Figure 3.14 (b): BOOK, AUTHOR, and BOOK-AUTHOR-INTERSECTION

REIALIONScveveveererreeneeeriererreneresensesecseesenteseesessssessssesssssssssessessossssnns 103
Figure 3.15 (a): SALES-ORDER Hybrid Object and ITEM, CUSTOMER

and SALESPERSON Compound Objectscccceuveruerrucnirinnnnnnennnnnn. 104
Figure 3.15 (b): SALES-ORDER, ITEM, CUSTOMER,

SALESPERSON, and LINEITEM Relationsccocecveviinicininiennnenns 105

XV

Figure 3.16 (a): FLIGHT Association Object and AIRPLANE and

PILOT Compound ObBJECESccuevevueeiuerreecereerieeeeseeeessseeeeesseesessesens 107
Figure 3.16 (b): AIRPLANE, PILOT, and FLIGHT Relationsoevvveveemreresrennn. 108
Figure 3.17 (a): EMPLOYEE Supertype and MANAGER Subtype Objects.................. 108
Figure 3.17 (b): EMPLOYEE and MANAGER Relations.............ovvvvooeooooooooooo 109
Figure 3.18 (a): TEXTBOOK Archetype and EDITION Version Objects 109
Figure 3.18 (b): TEXTBOOK and EDITION Relations.......... eerert ettt e ettt renrens 110
Figure 4.1: Typical JAVA Environment....................... ettt e s e e s e e e benenren 113
Figure 4.2: JDBC TWO-TI€r MOELcuvueeeeeeceieeeeeeeeeeeeeeetee e res e seeese e 134
Figure 4.3: JDBC Three-Tier MOGELoouuveeeeieeceeeeeeeseeeessessssssesessesseses e 135
Figure 4.4: JDBC Driver Implementationceceveeeereeesereeeesesresseseseesesesessessessons 136
Figure 6.1: Semantic Object — Relational Table Transformation...................oveevvovonn. 155
Figure 6.2: POET Database Relationship DiaGramooooveevvvveervvessoersreseosssoooo. 164
Figure 7.1: Data Types Available in MiCTOSOft ACCESSuvuvueverereeeresreresereseeeeeresseseenns 166
Figure 7.2: Table Design View for Operation Relation...........c.cvvevevevveeeeeevererereererernn. 167
Figure 7.3: QBE Window for Previous Assignments Query................... et 168
Figure 7.4: POET Application Program Architectureoceveevevevreeereereeseresseernnnns 169
Figure 7.5: Operation INPUt FOITML...........c.cvvueuiieieeiteeeteeeeeeseeeeeeeeeee oo 171
Figure 7.6: Select Exercise Dialog Box for Operation Update Form.............ooevue...... 172
Figure 7.7: Operation Update FOrM............c.ovoieuiieiniteeeeeeeeeeeeeee e eeeeeesesevesesesesee e e, 172
Figure 7.8: Training Table......................... ettt e st e st e et e teeete e e esaerensestenne 173
Figure 7.9: POrt ViSit REPOIt......ccvveuiiriurueierieierieteetesctetseesceseeeeeseeeesesessssesesesesesseses s sas 175
Figure 7.10: Select Exercise Dialog BoX.........cvveeeeveeeeuverreeerennnn. oo eeeeese s eeeeesennnn 177

Figure 7.11: EXEICISE/EVENt QUETYooveveuimeeieeeeeereresesesesesesesesesseseesssessssssessessesens 177

xvi

LIST OF TABLES

Table 4.1: SQL and Java Data Types and Recommended Conversion Methods

xvii

............

Xviii

ACKNOWLEDGEMENT / DEDICATIONS

Oné of the great pleasures of finishing up this thesis is acknowledging the support
of people whose names may not appear any where in the thesis,‘but whose. cooperation,
friendship, understanding and patience were crucial for me to prepare this thesis and
successfully publish it.

I would like to extend my sincere gratitude to my thesis advisors, Professor C.
Thomas Wu and Prof. Lee Edwards, for assisting me in deciding a thesis topic that will
satisfy the requirements of both Computer Science and Systems Management
departments, helping me throughout the study and making it a beneﬁcial experience.
Additionally, I would like to thank my wife, Sibel Can, for enduring the entire thesis
process.

* Finally, I would like to dedicate this thesis to my daughter, Rana Deniz Can, who

is born during my thesis study.

Xix

I. INTRODUCTION

A. BACKGROUND

The Turkish Navy frigates, in their present étate, lack the automated information
infrastructure required to efficiently perform their administrative tasks. This hinders the
ships’ ability to generate the required reports rapidly and to make decisions effectively

| based on this administrative information. The lack of an adequate information technology
system results in redundant and imprecise data maintained at different field sites and in
different file formats. This ultimately leads to a waste of computer resources, manpowef
and time.

The management of the administrative activities is a difficult and time-consuming
job in terms of report and message preparation, maintenance of data at different sites, and
access to information. Furthermore, the large volume of daily, weekly, monthly, and
annual reports required either for submission to the higher command or for the ship's
internal use, makes the administrative tasks very difficult. In addition, the command
needs timely and accurate information in decision making.

In the current situation, it is a time consuming process to prepare the required
documents, because each department in the ship keeps its data in a different format and
environment and the information needed is not stored in a central database. There is
neither a standard format nor a software program to store, manipulate, and access the

data.

As a solution to the problems discussed in the previous paragraphs, a database
that will store information about Personnel, Operations, Equipment, and Training (POET)
and an application program that will provide the graphical user interface will be
developed for the Turkish Navy frigates. The POET database system will provide the
Turkish Navy ships with an automated information system to perform their primary
administrative functions. POET will support this mission by keeping track of all the
personnel, op;rations, equipment, and training records, maintaining them, producing
standard reports and providing the command with ad hoc information. This program is
expected to eliminate most of the current problems and to result in considerable savings
of personnel power and time while providing the required information to the command

quickly.

B. OBJECTIVE

The objective of this thesis’ is to design and implemeht the Personnel, Operations,
Equipment, and Training (POET) Database and Application Program for the Turkish
Navy ﬁgates and to analyze the potential benefits that will be obtained by using this
system. The main goal of developing the POET database system is to support the
administrative activities, to release manpower to perform other duties and to reduce the
productive power loss by increasing the availability, accuracy, efficiency, and
consistency of the data needed to generate the documents and reports. The use of the
POET database system will greatly reduce the work hours spent on spéciﬁc

administrative tasks and provide more time to maintain an efficient operational level.

The design of the database system takes the Turkish Navy frigates’ functional
requirements into consideration. The primary function of the database system is to store
the personnel, operations, equipment, training and other relevant information in a central
database, to provide an easy-to-use graphical intérface, to generate some standard reports

and ad hoc queries, and to help the administrative office personnel.

C. METHODOLOGY

There are different methodologies for developing systems. The process that will
be followed in this thesis captures the essence of most development methodologies. The
fuﬁdamental phases of the systerﬁ development process are explained briefly in the
following subsections: Requirements Analysis; Conceptual Database Design; Logical

Database Design; Physical Database Design; Systems Analysis and Evaluation.

1. Requirements Analysis

The major task of the first step in database development process is collecting
information content and the processing requirements from all the identified énd potential
users of the database. During this step, database users are interviewed to understand and
document the data requirements. In parallel with specifying the data requirements, it is
useful to specify the known functional requirements of the application. During the
requirements analysis phase, the tasks are to create the user's data model, determine the
functional compbnents of the application, and use prototypes to help determine user

requirements.

2. Conceptual Database Design

Once all the requirements have been collected and analyzed, the next step is to
create a conceptual schema for the database, using a high-level conceptuall data model,
such as Entity-Relationship Model or Semantic Data Model. The conceptual schema is a
concise description of the data requirements of the user and iﬁcludes detailed descriptions
of the data typés, relationships, and constraints; these are expressed using the concepts
providec} by the high-level data model. Semantic Data Model will be used as the high-

level data model to represent the conceptual schema for the POET database.

3. Logical Da'tabase Design

The next step in the database design is the actual implementation of the database,
using a commercial DBMS. The major goal of the logical database design phase is to use
the results of the conceptual design phase and the pro'cessing requirements as input to
create a DBMS-processible schema as output. During this phase, the tasks are to develop
the database design and the application design. The database design consists of
structuring the relations, and establishing the relationships among them. The application
design deals with the design of the forms, reports, and tables as well as the specification
of update, display, and control mechanisms.

POET database system will be developed by using Microsoft Access database

management system.

4. Physical Database Design

During the physical database design phase, the internal storage structures and file
organizations for the database are specified. Physical database design is the process of
developing an efficient and implementable physical database structure from a given
- logical database structure that has been shown ;to satisfy user information requirements.
In parallel with thése activities, application programs are implemented as database
transactions corresponding to the high-level transaction specifications.

The application program will be implemented with Java programming language

and JDBC application programming interface.

S. System Analysis and Evaluation

Upon completion of the implementation, POET database system will be evaluated
and the possible benefits and advantages that would be gained by using the system will
be analyzed from manpower, management, and techhical perspectives. In this phase,
systems implementation and support issues, such as conversion, training, testing, and

systems reliability and maintenance, are discussed.

D. ORGANIZATION OF THESIS

This thesis is organized into the following chapters:

e Chapter I: Introduction. This chapter gives an overview of the problem,
motivation, purpose and general outline of the thesis. It provides information

about the background, objective, and methodology of the study.

* Chapter II: Background. This chapter is intended to provide an overview of
the concepts used throughout the thesis. An explanation of the Database
Systems, Relational Database Model, S&uctured Query Language,
Normalization, and Microsoft Access Database Management System will be

provided.

» Chapter III: Semantic Data Model. This chapter describes the Semantic Data

Model, a high-level semantics-based data model that enables the semantics of
a database to be incorporated directly into its schema. The semantic object
types as well as the transformation of semantic objects into the relational

tables are explained in this chapter.

e Chapter IV: Java and JDBC. Java and the JDBC package provide a concise
and efficient way to access and manipulate data stored in a Relational
Database Management System (RDBMS); The interaction between the user
interface and back-end data sources of the POET database system is based on
JDBC. This chapter will describe how to use Java and JDBC application
programming interface (API) to provide this type of interaction. It will
summarize the attributes of Java programming language and outline the JDBC
AP], classes, methods, and how they can be used by applications to directly

access a RDBMS.

Chapter V: Requirements Analysis for POET Database. This chapter first

provides a general description of the database development process and
briefly explains the phases of the process. Then, data requirements for the
POET database system are explained by' giving information about the

semantic objects that constitute the data model.

Chapter VI: Logical Database Design for POET Database. In this chapter, the
logical database design for POET database is described. Logical database
design phase covers the transformation of the semantic objects into the
relational model. The POET database tables and the relationships among them

are defined in Chapter VI.

Chapter VII: Implementation for POET Database and Application Program.

This chapter takes the reader through the database and application program
design for the POET system. It explains how the relational database tables are
implemented in Microsoft Access RDBMS and provides information about

the forms, reports, tables, and queries supported by the application program.

Chapter VIII: Systems Implementation and Support. This chapter will discuss
the systems implementation and support issues in general. Five aspects of
systems implementation and support; including system maintenance, quality

assurance, system reliability, training, and conversion will be described.

o Chapter IX: Analysis of POET Database System. Chapter IX provides an

analysis and evaluation of the POET database system. First, a brief
introduction about the current situation of information processing in the
Turkish Navy frigates is given and the ﬁlé—proc_essing systems is compared
with the database processing systems. Then, it analyzes the benefits of the
system from managerial, manpower, and technical aspects. Finally, the system
implementation and installation issues are explained for the POET database

system.

¢ Chapter X: Conclusions. This chapter provides a short summary of the thesis
and addresses possible future enhancements that might be made to the

developed system.

e Appendices A through F supplement the chapters by providing complete

diagrams, specifications, and program code.

Appendix A: Semantic Objects
Appendix B: Domain Specifications
. Appendix C: Relational Tables
Appendix D: Relationship Diagram
Appendix E: Application Program Screen Shots

Appendix F: Application Program Code

I. BACKGROUND

This chapter provides the background information necessary to understand the
thesis and the POET database application program. Hence, informat’ion will be presented
about database systems, relational database model, structured query language,
normalization, Microsoft Access, and systems implementation and support in the

~ following subsections.

A. DATABASE SYSTEMS -

Databases and database technology are having a major impact on the growing’use
of computers. Databases play a critical role in almost all areas where computers are used,
including business,‘ engineering, medicine, law, education, and intelligence, to name a
few. The word database is in such common use that we must begin by defining what a
database is. A database is a collection of related data. By data, we mean known facts that
can be recorded and that have implicit meaning.

The preceding definition of database is quite general; for example, one may
consider the collection of words that make up this page of text to be ¥elated data and
hence to constitute a database. However, the common use of the term database is usually

more restricted. A database has the following implicit properties: [Réf. 1]

e A database represents some aspect of the real world, sometimes called the

miniworld or the Universe of Discourse (UoD). Changes to the miniworld are '

9

reflected in the database.

e A database is a logically coherent collection of data with some inherent
meaning. A random assortment of data cannot correctly be referred to as a

database.

® A database is designed, built, and populated with data for a specific purpose.
It has an intended group of users and some preconceived applications in which

these users are interested.

In other words, a database has a source from which data are derived, some degree
of interaction with events in the real world, and an audience that is actively interested in
the contents of the database. [Ref. 1]

A database management system (DBMS) is a collection of programs that enables
users to create and maintain a database. The DBMS is a general-purpose software system
that facilitates the processes of defining, constructing, and manipulating databases for
'various applications. Defining a database involves specifying the data types, structures,
and constraints for the data to be stored in the database. Constructing the database is the
'process of storing the data itself on some storage medium that is controlled by the
DBMS. Manipulating a database includes such functions as querying the database to
retrieve specific data, updating the database to reflect changes in the miniworld, and
generating reports from the data.

It is not necessary to use general-purpose DBMS software for implementing a

computerized database. The programmer could write his or her own set of programs to

10

create and maintain the database, in effect creating a special-purpose DBMS software, as
it is done in the implementation of the POET database application program. The database

and the software together are called a database system.

1. Benefits of the Database Approach

A number of characteristics distinguish the database approach from the traditional
approach of programming with files. In traditional file processing, each user defines and
implements the files needed for a specific application. This redundancy in defining and
storing data results in wasted storage space and in redundant efforts to maintain the data .
up-to-date.

In the database approaéh, a single repository of data is maintained that is defined
once and then is accessed by various users. The main properties of the database approach

versus the file processing approach are described as follows.

a. Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database
system contains not only the database itself, but also a complete definition or description
of the database. This definition is stored in the system catalog, which contains
information such as the struéture of each file, the type and storage format of each data
item, and various constraints on the data. The information stored in the catalog is called
metadata, and it describes the structure of the primary database. [Ref. 1]

The catalog is used by the DBMS software and occasionally by database
users, who need information aboqt the database structure.

11

The DBMS software is not written fof any specific database application,
and hence it must refer to the catalog to know the structure. of the files in a specific
database, such as the type and format of data it will access.

In traditional file processing, data definition is tﬁicﬂly part of the
application programs. Hence, these programs are constrained to work with only one
specific database, whose structure is declared in the application programs. Whereas file-
processing software can only access specific databases, DBMS software can access
diverse databases by extracting the database definitions from the catalog and then using

these deﬁnitions.

b. Data Abstraction

In traditional file processing, the structure of data files is embedded in the
~ access programs, so any changes to the structure of a file may require changing all
programs that access this file. By contrast, DBMS access programs are written
independently of any specific files. The structure of data files is stored in the DBMS
catalog separately from the access programs. This property is normally called program-
data independence.

Recent developments in object-oriented databases and programming
languages allow users to define operations on data as part of ‘the database definitions. An
operation (also called a function) is specified in two parts. The interface (or signature) of
an operation includes the operation name and the data types of its arguments (or
parameters). The implementation (or method) of the operation is specified separately and
can be changed without affecting the interface. User applicatibn programs can operate on

12

the data by invoking these operations through their names and arguments, regardless of
how the operations are implemented. This may be termed program-operation
independence. [Ref. 1] |

The characteristic that allows program-data independence and program-
operation independence is called data abstraction. A DBMS provides users with a
conceptual representation of data that does not include many of the details of how the
data is stored. informally, a data model is a type of data abstraction that is used to provide
this conceptual representation. The data model uses logical concepts, such as objects, |
their properties, and their interrelationships, that may be easier for most users to
understand than computer storage concepts. Hence, the data model hides storage details

that are not of interest to most database users.

c Support of Multiple Views of the Data

A database typically has many users, each of whom may require a
different perspective or view of the database. A view may be a subset of the database or it
| may contain virtual data that is derived from the-database files, but not explicitly stored.
A multi-user DBMS whose users héve a variety of applications provides facilities for

defining multiple views. [Ref. 1]

d. Sharing of Data and Mulﬁ-user Transaction Processing

A multi-usef DBMS, as its name implies, must allow multiple users to
access the database at the same time. This is essential if data for multiple applications is
to be inteérated and maihtained in a single database; The DBMS must include

13

concurrency control software to ensure that several use}s trying to update the same data
do so in a controlled manner so that the result of the updates is correct. An example is
when several reservation clerks try to assign a seat on an airline flight; the DBMS should
ensure that each seat can be accessed by only one clerk at a time for passenger
assignment. These are generally called transaction-processing épplications. “A
| fundamental role of multi-user DBMS software is to ensure that concurrent transactions

operate correctly without interference. [Ref. 1]

e. Controlling Redundancy

In traditional software development utilizing file processing, every user
group maintains its own files for handling its data-processing applications. Much of the
data is stored twice: once in the files of each user group. Additional user groups may
further duplicate some or all of the same data in their own files.

This redundancy‘in storing the same data multiple times leads to several
problems. First, there is the need to perform a single logical update -- such as entering
data on a new tuple -- multiple times. This leads to duplication of effort. Second, storage
space is wasted when the same data is stored repeatedly, and this problem may be serious
for large databases. Third, files that represent the same data may become inconsistent.
This may happen because an update is applied to some of the files, but not to others.

In the database approach, the views of different user groups are integrated
during database design. For consistency, we should have a database design that stores
each logical data item in only one place in the database. This does not permit any

inconsistency and it saves storage space. [Ref. 1]

14

A Restricting Unauthorized Access

When multiple users share a database, it is likely that some users will not
be authorized to access all information in the database. For example, financial datak is
often considered confidential, and hence only authorized persons are allowed to access
such data. In addition, some users may be permitted only to retrieve data, whereas others
are allowed both to retrieve and to input; i.e., updates. Hence, the type of access operation
-- retrieval or update -- must also be controlled. Typically, users or user groups are given
account numbers protected by passwords, which they can use to gain access to the
database. A DBMS should prox}ide a security and authorization subsystem, which the
database administrator (]jBA) uses to create accounts and to specify account restrictions.

The DBMS should then enforce these restrictions automatically. [Ref. 1]

g Persistent Storage for Program Objects and Data Structures

A recent application of databases is to. provide persistent storage for
program objects and data structures. This is one of the main reasons for the emergence of
the object-oriented DBMS. Programming languages typically have complex data
structures, such as record types in PASCAL or class definitions in C++. The values of
program variables are discarded once a program terminates, unless the programmer
explicitly stores them in permanent files, which often involves converting these complex
structureé into é format suitable for file storage. When the need again arises to read this

data, the programmer must convert from the file format to the program variable structure.

15

Object-oriented database systems are compatible with programming
1anguages such as C++ and Java, and the DBMS software automatically performs any
necessary conversions. Hence, a complex object in C++ can be stored permanently in an
object-oriented DBMS. Such an object is said to be persistent, since it survives the
termination of program execution and can later be directly retrieved by another C++

program. [Ref. 1]

h. Database Inferencing Using Deduction Rules

Another recent application of database systems is to provide capabilities
for 'deﬁning deduction rules for inferencing new information from the stored database
facts. Such systems are called deductive database systems. For example, in education
there may be complex rules in the miniworld application for determining when a student
is on probation. These can be specified declaratively as deduction rules, which when
executed can determine all students on probation. In a traditional DBMS, an explicit
procedural program code would have to be written to support such applications. But if the
miniworld rules change, it is generally more convenient to change the declared deduction

rules than to recode procedural programs. [Ref. 1]

L Providing Multiple User Interfaces

Because many types of users, with varying levels of technical knowledge,
use a database, a DBMS should provide a variety of user interfaces. These include query
languages for casual users, programming language interfaces for application

programmers, forms and command codes for parametric users, and menu-driven

16

interfaces and natural language interfaces for stand-alone users. [Ref. 1]

Je Representing Complex Relationships Among Data

A database may include numerous varieties of data that are interrelated in
many ways. A DBMS must have the capability to represent a variety of complex
relationships among the data as well as to retrieve and update related data easily and

efficiently. [Ref. 1]

k. | Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must
hold for the data. A DBMS should provide capabilities for defining and enforcing these
constraints. The simplest type of integrity constraint involves specifying a data type for
each data item. A more complex type of cpnstraint that occurs frequently involves
specifying that a record in one file must be related to records in other files. Another type
of constraint specifies uniqueness on data item values. These constraints are derived from
the meaning or semantics of the data and of the miniworld it represents. It is the database

designers' responsibility to identify integrity constraints during database design. [Ref. 1]
L Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software

failures. The backup and recovery subsystem of the DBMS is responsible for recovery.

17

For example, if the computer system fails in the middle of a complex update program, the
recovery subsystem is responsible for making sure that the database is restored to the
state it was in before the program started executing.

Alternatively, the recovery subsystem could ensure that the program is
resumed from the point at which it was interrupted so that its full effect is recorded in the

database. [Ref. 1]

m. Potential for Enforcing Standards

The database approach permits the DBA to define and enforce standards
among database users in a large organization. This facilitates communication and
cooperation among various departments, projects, and users within the organization.
Standards can be defined fo; names and formats of data elements, display formats, report
structures, terminology, and so on. The DBA can enforce standards in a centralized
database environment more easily than in an environment where each user group has

control of its own files and software. [Ref. 1]

n. Reduced Application Development Time

A prime feature of the database approach is vthat developing a new
application takes very little time. Designing and implementing a new database from
scratch may take more time than writing a single specialized file application. However,
once a database is up and running, substantially less time is generally required to create
new applications using DBMS facilities. Development time using a DBMS is estimated

to be one-sixth to one-fourth of that for a traditional file system. [Ref. 1]

18

o. Flexibility

It may be necessary to change the structure of a database as requirements
change. For example, a new user group may emerge that needs additional information not
currently in the database. In response, we may need to add a new file to the database or to
extend the data elements in an existing file. Database systems allow such changes to the
structure of the database without affecting the stored data and the existing application

programs. [Ref. 1]

P Availability of Up-to-Date Information

A DBMS makes the database available to all users. As soon as one user's
update is applied to the database, all other users can immediately see this update. This
availability of up-to-date information is essential for many transaction processing
applications, such as reservation systems or banking databases, and it is made possible by

the concurrency control and recovery subsystems of a DBMS. [Ref. 1]

q. Economies of Scale
The DBMS approach permits consolidation of data and applications, thus
reducing the amount of wasteful overlap between activities of data-processing personnel

in different projects or departments. This reduces overall costs of operation and

management.

19

2. Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some
level of data abstraction by hiding details of data storage that are not needed by most
database users. A data model is the main tool for providing this abstraction. A data model
is a set of concepts that can be used to describe the structure of a database. By structure
of a database, it is meant data types, relationships, and constraints are used to
configure/organize the data. Most data models also include a set of basic operations for
specifying retrievals and updates on the database. It is gradually becoming common
practice to include concepts in the data model to specify behavior; this refers to
specifying a set of valid user-defined operations that are allowed on the database in

addition to the basic operations provided by the data model.

a. Categories of Data Models

It is possible to categorize data models based on the types of concepts they
provide to describe the database structure. High-level or conceptual data models provide
concepts that are close to the way many users perceive data, whereas low-level or
physical data models provide concepts that describe the details of how data is stored in
the computer. Between these two extremes is a class of representational (or
implementation) data models, which provide concepts that may be understood by end
users but that are not too far removed from' the way data is organized within the
computer. Representational data models hide some details of data storage, but can be

implemented on a computer system in a direct way.

20

High—lével data models use concepts such as entities, attributes, and
relationships. An entity represents a real-world object or concept, such as an employee Aor
a project, which is stored in the database. An attribute represents some property of
interest that further describes an entity, such as the employee's; name or salary. A
relatiénship among two or more entities represents an inferaction among the entities; for
example, a works-on relationship between an employee and a project.

Representational or implementation data models are the ones used most
frequently in current commercial DBMSs, and they include the four most widely used
data models: Relational, network, hierarchical, and object-oriented. They represent data
by using record structures and hence are sometimes called record-based data models. We
can regard object-oriented data models as a new family of higher-level implementation
data models that are closer to conceptual data models.

Physical data models describe how data is stored in the computer by
representing information such as record formats, record orderings, and access paths. An
access path is a structure that makes the search for particular database records efficient.

[Ref. 1]

b. Schemas and Instances

In any data model it is important to distinguish between the description of
the database and the database itsélf. The description of a database is called the database
| schema (or the ﬁetadata). A database schema is specified during database deéign and is

not expected to change frequently.

21

However, the actual data in a database may change frequently. The data in
the database at a particular moment in time is called a database state (or set of
occurrences or instances). The distinction between database schema and database state is
very important. When we define a new database, we only specify its database schema to |
the DBMS. At this poiht, the corresponding database state is the "empty state" with no
data. The DBMS stores the schema in the DBMS catalog so that DBMS software can

refer to the schema whenever it needs to.

3. DBMS Architecture

Described in this section is the architecture for database systems, called the three-
schema architecture that is proposed to separate the user applications and the physical
database. In this architecture, schemas can be defined at the following three levels:

internal; conceptual; and external schema. [Ref. 1]

a Internal Schema
The internal level has an internal schema, which describes the physical
storage structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

b. Conceptual Schema
The conceptual level has a conceptual schema, which describes_ the

- structure of the whole database for a community of users.

22

The conceptual schema hides the details of physical storage structures and concentrates
on describing entities, data types, relationships, user operations, and constraints. A high-

level data model or an implementation data model can be used at this level.

G External Schema

The external level includes a nuxﬁber of external schemas or user views.
Each external schema describes the part of the database that a particular user group is
interested in and hides the rest of the database from that user group. A high-level data

model or an implementation data model can be used at this level.

B. THE RELATIONAL DATABASE MODEL

Within the realm of database engineering, there are four basic types of database
models: Relational, Network, Hierarchical, and Object-Oriented database models. The
relational model represents the database as a collection of tables, where each table can be
stored as a separate file. The network model represents data as record types and also
represents a limited type of one-to-many relationship, called a set type. The network has
an associated record-at-a-time language that must be embedded in a host programming
language. The hierarchical model represents dafa as hierarchical tree structures. Each
hierarchy represents a number of related records. There is no standard language for the
| hierarchical model, although most hierarchical DBMSs have record-at-a-time languages.
The object-oriented model defines a database in terms of objects, their properties, and

their operations. Objects with the same structure and behavior belong to a class, and

23

classes are organized into hierarchies. Tﬁe operations of each class are specified in terms
of predefined procedures, called methods.

Most of the commercial database management systems implement the relational
database model, which is the most common model in use today. Tﬂerefore, the focus of
this section and the implementation of the POET database system will be the relational
database model.

The relational model was introduced by E.F. Codd in 1970 and it is based on a
simple and uniform data structure, called the relation, and has a solid theoretical
foundation. The relational model represents the database as a collection of relations.
Informally, each relation resembles a table or, to some extent, a simple file. [Ref. 11 For
example, the database of tables shown in Figure 2.1 is considered to be in the relational

model.

1. Relational Mbdel Concepts

When a relation is thought of as a table of values, each row in the table represents
a collection of related data values. These values can be interpreted as facts describing a
real-world entity or relationship. The table name and column names are used to help in
interpreting the meaning of the values in each row of the table. An example is presented
here for explanation. The first table of Figure 2.1 is called STUDENT, because each row
represents facts about a particular student entity. The column names - StudentName,
StudentNumber, Cla;ss, Major - specify how to interpret the data values in each row,

based on the column each value is in. All values in a column are of the same data type.

24

STUDENT Relation

Flowers 17 4 CS

Dowler 25 3 CS

Tidwell 36 4 EE
COURSE Relation

CourseName CourseNumber CreditHours Department

Database CS3320 4 CS

Networks 1IS3502 4 I™

Computer Security | CS3600 3 CS

Calculus MA3200 5 MATH
SECTION Relation

| SectionID CourseNumber Quarter Instructor

85 CS3320 Summer 99 Wu

88 CS3320 Summer 99 Eagle

56 1S3502 Fall 99 Lundy

42 MA3200 Spring 99 Rasmussen

44 MA3200 Summer 99 Carlos

GRADE Relation

StudentNumber SectionlD Grade
17 85 |A
17 ' 56 B
25 88 B
25 44 C
PREREQUISITE Relation
CourseNumber PrerequisiteNumber
CS3320 CS3300 .
1S3502 182502
CS3600 MA3200
MA3200 MA1100

Figure 2.1: University Database [Ref. 1]

In relational model terminology, a row is called a tuple, a column header is called
an attribute, and the table is called a relation. The data type describing the types of values
that can appear in each column is called a domain. The following subsections will define

these terms more precisely.

26

a Domains, Tuples, Attributes, and Relations

A domain is a set of atomic values. By atomic, we mean that eéch value in
the domain is indivisible as far as the ;elational model is concerned. A common method
of specifying a domain is to specify a data type from which the data values forming the
domain are drawn. It is also useful to specify a name for‘ the domain, to help in

interpreting its values.

e United States (USA) Phone Numbers: The set of 10-digit phone
numbers valid in the United States.

e Social Security Numbers: The set of valid 9-digit social security
numbers.

e Grade Pqint Averages: Possibie mean values of computed grade point
averages; each must be a value between 0 and 4.

e Employee Ages: Possible ages of employees of a Company; each must

be a value between 16 and 80 years.

The preceding are logical definitions of domains. A data type or format is
also specified for each domain. For example, the data type for the domain US phone
numbers can be declared as a character string of the form (ddd) ddd-dddd, where each d
is a numeric (dpcimal) digit and the first three digits form a valid telephone area code. A
domain is thus given a name, data type, and format.

A relation schema R, denoted by R (A;, A,,..., A,), is made up of a

relation called R and a list of attributes A,, A, ..., A, A relation schema is used to

27

de;cribe arelation; R is called the name of this relation. Each attribute A is the name of a
role played by some domain D in the relation schema R. P is called the domain of A and
is denoted by dom (A;). The degree of a relation is the number of attributes n of its
relation schema. [Ref. 1]

An example of a relation schema for a relation of degree 7, which

describes university students, is the following:

STUDENT (Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)

Figure 2.2: STUDENT Relation

b. Characteristics of Relations

A relation is defined as a set of tuples. Mathematically, elements of a set
have no order among them; hence, tuples in a relation do not have any particular order.
Tuple ordering is not part of a relation definition, because a relation attempts to represent
facts at a logical or abstract level. When a relation is implemented as a file, a physical
ordering may be specified on the records of the file. [Ref. 1]

According to the preceding definition of a relation, an n-tuple is an
ordered list of n values, so the ordering of values in a tuple - and hence of attributes in a
relation schema definition - is important. However, at a logical level, the order of
attributes and their values are not really important as long as the correspondence between
attributes and values is maintained.

Another property of the relation is that there are no duplicate tuples in a

relation. This property follows from the fact that the body of the relation is a

28

mathematical set (i.e., a set of tuples), and sets in mathematics by definition do not
include duplicate elements. An important corollary of this fact is that there is always a
primary key. Since tuples are unique, it follows that at least the combination of all
attributes of the relation has the ﬁniqueness property. [Ref. 2]

Each value in a tuple is an atomic value; that is, it is not divisible into
components within the framework of the relational model. Hence, composite and
multivalued attributes are not allowed in a relation. Multivalued attributes must be
represented by separate relations, and composite attributes are represented only by their
simple component attributes. [Ref. 1]

The values of some attributes within a particular tuple may be unknown or
may not apply to that tuple. A special value, called null, is used for these cases. In
general, we can have several types of null values, such as “value unknown”, “attribute
does not apply to this tuple”, or “this tuple has no value for this attribute”. -

As a summary, for a table to be a relation the following must hold: The
cells of the table must be single valued (atomic), and neither repeating groups nor arrays
are allowed as values. All entries in any column must be of the same kind. Each column
must have a unique name, but the order of the columns in the table is insignificant.
Finally, no two rows in a table may be identical, and the order of the rows is not

important. [Ref. 3]

29

c Types of Relations

There are three types of relations that can exist in a relational system: Base
relations, views, snapshots, query results, intermediate results, and temporary relations.
[Ref. 2]

(1) Base Relations: A base relation corresponds to a table
whose tuples are physically stored in the database; that is, it is a named, autonomous
relation. In other words, base relations are those relations that are sufficiently important
that the database designer has decided that it is worth giving them a name and making

them a direct part of the database.

(2) Views: A view is a named, derived relation that is
represented within the system purely by its definition in terms of other named relations. It

does not have any separate, distinguishable stored data of its own (unlike a base relation).

(3) Snapshots: A snapshot is also a named, derived relation,
like a view. Unlike a view, however, a snapshot is real, not virtual. It is represented not

only by its definition in terms of other named relations, but also by its own stored data.
(4) Query Results: A query result is, as the name implies,

simply the final output relation resulting from some specified query. It may or may not be

named. Query results have no persistent existence within the database.

30

(5) Intermediate Results: An intermediate result is a relation
(typically unnamed) that results from some relational expression that is nested within a

larger expression.

(6) Temporary Relations: A temporary relation is a named
relation, like a base relation or view or snapshot, but unlike a base relation or view or

snapshot, it is automatically destroyed at some appropriate.

2. Relational Model Constraints

The various types of constraints that can be specified on a relational database
schema include domain constraints, key constraints, entity integrity, and referential
integrity constraints. Other types of constraints, called data dependencies (which include
functional dependencies and multivalued dependencies), are used mainly for database

design by normalization and will be discussed in Section D of this chapter.

a. Domain Constraints

Domain constraints specify that the value of each attribute “A” must be an
atomic value from the domain dom(A) for that attribute. The data types associated
with domains typically include standard numeric data types for integers (such as short- -
integer, integer, long-integer) and real numbers (float and double-precision float).
Characters, fixed-length strings, and variable-length strings aré also available, as are
date, time, timestamp, and money data types. Other possible domains may be

described by a subrange of values from a data type or as an enumerated data type

31

where all possible values are explicitly listed. [Ref. 1]

b. Key Constraints

A relation is defined as a set of tuples. By definition, all eléments of a set
are distinct; hence, all tuples in a relation must also be distinct. This means that no two
tuples can have the same combination of values for all their attributes. Usually, there are
other subsets of attributes of a relation schema R with the property that no two tuples in
any relation instance r of R should have the same combination of values for these
attributes. Any such set of attributes is called a superkey of the relation schema R. Every
relation has at least one superkey -- the set of all its attributes. A superkey can have
redundant attributes, however, so a more useful concept is that of a key, which has no
redundancy. Hence, a key is a minimal superkey, a superkey from which we cannot
remove any attributes and still have the uniqueness constraint hold.

For example, cénsider the STUDENT relation of Figure 2.2. The attribute
set {SSN} is a key of STUDENT, because no two-student tuples can have the same-value
for SSN. Any set of attributes that includes SSN -- for example {SSN, Name, Age} --is a
superkey.

The value of a key attribute can be used to identify uniquely a tuple in the
relation. For example, the SSN identifies uniquely each tuple in the STUDENT relation.
Notice that a set of attributes constituting a key is a property of the relation schema; it is a
constraint that should hold on every relation instance of the schema. A key is determined

from the meaning of the attributes in the relation schema.

32

In general, a relation schema may have more than one key. In this case,
each of the keys is called a candidate key. It is common to designate one of the candidate
keys as the primary key of the relation. This is the candidate key whose values are used to

| identify tuples in the relation.

c. Entity Integrity Constraint

The entity integrity constraint states that no primary key value can be null.
This is because the primary key ;/alue is used to identify individual tuples in a relation;
having null values for the primary key implies that we cannot identify some tuples. For
example, if two or more tuples had null for their SSN values in the STUDENT relation of

| Figure 2.2, we might not be able to distinguish them.

d Referential Integrity Constraint

Key constraints and entity integrity constraints are specified on individual
relations. The referential integrity constraint is specified between two relations and is
used to maintain the consistency among tuples of the two relations. Informally, the
referential integrity constraint states that a tuple in one relation that refers to another
relation must refer to an existing tuple in that relation. For example, in Figure 2.1, the
attribute StudentNumber of GRADE relafion stores the student number for which the |
grade is recorded; hence, its value in every GRADE tuple must ﬁatch the StudentNumber
value of some tuple in the STUDENT relation.

To define referential integrity more formally, we must first define the

concept of a foreign key. When the key of one relation is stored in a second relation, it is

33

called a foreign key. The attributes in the foreign key must have the same domain as the
primary key attributes and the foreign key is said to reference or refer to a second
relation.

Refgrential integrity constraints typically arise from the relationships
among the entities represented by the relation schemas. Notice that a foreign key can
refer to its own relation. For example, the attribute SUPERSSN in EMPLOYEE relation
refers to the supervisor of an employee, which is another employee represented by a tuple
in the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that references the

EMPLOYEE relation itself.

3. Update Operations on Relations

There are three basic update operations on relations: insert, delete, and modify.
Insert is used to add a new tuple or tuples in a relation; delete is used to remove tuples;
and modify is used to change the values of some attributes. Whenever update operations
are applied, the integrity constraints specified on the relational database schema should

not be violated. [Ref. 1]

a. Insert Operation

The insert operation provides a list of attributé values for a new tuple that
is to be inserted into a relation. Insert can violate any of the four types of constraints
discussed in the previous section. Domain constraints can be violated if an attribute value
is given that does not appear in the corresponding domain. Key constraints can be

violated if a key value in the new tuple already exists in another tuple. in the relation.

34

Entity integrity can be violated if the primary key of the new tuple is null. Referential
integrity can be viola’;ed if the value of any foreign key refers to a tuple that does not
exist in the referenced relation. [Ref. 1]

If an insertion violates one or more constraints, two options are available.
The first option is to reject the insertion. The second option is to attempt to correct the

reason for rejecting the insertion.

,b' Delete Operation

This operation is used to remove the specified tuples from a relation. The
delete operation can violate only referential integrity, if the tuple being deleted is
referenced by the foreign keys from other tuples in the database. To specify deletion, a
céndition on the attributes of the relation selects the tuple to be deleted. [Ref. 1]

Three options are available if a deletion operation causes a violation. The
first option is to reject the deletion. The second option is to attempt to cascade (or
propagate) the deletion by deleting tuples that reference the tuple that is being deleted. A
third option is to modify the referencing attribute values that cause the violation; each

such value is either set to null or changed to reference another valid tuple.

c Modify Operation
The modify operation is used to change the values of one or more
attributes in a tuple (or tuples) of a relation. It is necessary to specify a condition on the

attributes of the relation to select the tuple (or tuples) to be modified. [Ref. 1]

35

Modifying an attribute that is neither a primary key nor a foreign key
usually causes no problems; the DBMS need only check to confirm that the new value is
of the correct data type and domain. Modifying a primary key value is similar to deleting
one tuple and inserting another in its place, because we use the priﬁqary key to identify

tuples.

4. Relational Algebra

The relational algebra is a collection of operations that are used to manipulate
entire relations. These operations are used to select tuples from individual relations and to
combine related tuples from several relations for the purpose of specifying a query on the
database. The result of each operation is a new relation, which can be further
manipulated. Relational algebra is closed, which means that the results of one or more
relational operations are always in a relational state.

The relational algebra operations are usually divided into two groups. One group
includes set operations frém mathematical set theory; these are applicable because each
relation is defined to be a set of tuples. Sef operations include UNION, INTERSECTION,
DIFFERENCE, and CARTESIAN PRODUCT. The other group consists of operations
developed specifically for relational databases;‘ these include SELECT, PROJECT, and

JOIN.

a. Set Operations
Set theoretic operations apply to the relational model, because a relation is

defined to be a set of tuples and can be used to process the tuples in two relations as sets.

36

Several set theoretic operations are used to merge the elements of two sets in various
" ways, including UNION, INTERSECTION, and DIFFERENCE. These operations are
binary; that is, they are applied to two sets. In order to apply any of these three operations
on the relational model, it is necessary that the relations have the Same type of tuples; this

condition is called union compatibility.
Two relations are said to be union compatible if they have thé same

number of attributes and that each pair of corresponding attributes have the same domain.

We can define the three oOperations UNION, INTERSECTION, and

DIFFERENCE on two union-compatible relations, “R” and “S”, as follows:

(1) Union: The result of this operation is a relation that
includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are

eliminated.

(2) Intersection: The result of this operation is a relation that

includes all tuples that are in both R and S.

(3) Difference: The result of this operation is a relation that

includes all tuples that are in R but not in S.

(4) Cartesian Product: The result of this operation is a relation

that includes one tuple for each combination of tuples — one from R and one from S; that

37

is every tuple from R is combined with every tuple from S. The relations on which

CARTESIAN PRODUCT operation is applied do not have to be union compatible.

b. SELECT Operation

The SELECT operation is used to select a subset of the tuples in a relation
that satisfy a selection condition. In general, the SELECT operation is denoted by

G<selection condition> (<relation name>)

The relation resulting from the SELECT operation has the same attributes
as the relation on which this operation is applied. The Boolean expression specified in the
selection condition is made up of a number of clauses of the form:

<attribute name> <comparison operator> <constant value>, or
<attribute name> <comparison operator> < attribute name >
where <attribute name> is the name of an attribute of <relation name>, <comparison
operator> is one of the operators =, <, <, >, >, # and <constant value> is a constant
value from the attribute domain. Clauses can be connected by the Boolean operators
AND, OR, and NOT to form a general condition.
The SELECT operator is unary; that is, it is applied on a single relation.

Hence, SELECT cannot be used to select tuples from more than one relation.

¢. - PROJECT Operation
If one might think of a relation as a table, the SELECT operation selects
some of the rows from the table while discarding other rows. The PROJECT operation,

on the other hand, selects certain columns from the table and discards the other columns.

38

If we are interested in only certain attributes of a relation, we use the PROJECT operation
to "project” the relation over .these attributes. Projection can also be used to change the
order of attributes in a relation. The general form of a PROJECT operation is

Ti<attribute list> (<relation name>)
where <éttribute list> is a list of attributes of the relation specified by <relation name>.
The resulting relation has only the attributes specified in <attribute list> and in the same
order as they appear in the list. The PROJECT operation implicitly removes any duplicate

tuples, so the result of the PROJECT operation is a set of tuples and a valid relation.

d. JOIN Operation

The JOIN operation, denoted by 1 , is used to combine related tuples
from two relations into single tuples. This operation is very important for any relational
database with more than a single relation, because it allows us to process relationships
among relations. Essentially, JOIN operation is the same as a Cartesian Product followed
by a SELECT operation. The general form of a JOIN operation on two relations R and S
is

R ™ Soin condition> S

The resulting relation has one tuple for each combination of tuples
whenever the combinétion satisfies the join condition. The most common JOIN involves
join éonditions with eéuality comparisons only. Such a JOIN, where the only comparison
operator used is =, is called an Equijoin. In the result of an Equijoin, there are always one

or more pairs of attributes that have identical values in every tuple.

39

Because one of each pair of attributes with identical values is superfluous,
a new operation, called Natural Join, was created to get rid of the second attribute in an

equijoin condition.

C. STRUCTURED QUERY LANGUAGE (SQL)

SQL is a declarative database language designed for use with relational databases.
It has been endorsed by the American National Standards Institute (ANSI) as the
language for manipulating relational databases, and it is the data access language used by
many commercial DBMS products, including DB2, ORACLE, INGRES, SYBASE, SQL
Server, dBase, Microsoft Access, Paradox, and many others. Originally, SQL was called
Structured English Query Language (SEQUEL) and was designed and implemented at
IBM Research as the interface for an experimental relational database system.

SQL is a comprehensive database language; it has statements for data definition,
query, and update. Hence, it is both a Data Definition Language (DDL) and a Data
Manipulation Language (DML). In addition, it has facilities for defining views on the
database, for creating and dropping indexes on the files that represen